Alignment of retention time obtained from multicapillary column gas chromatography used for VOC analysis with ion mobility spectrometry

نویسندگان

  • Thorsten Perl
  • Bertram Bödeker
  • Melanie Jünger
  • Jürgen Nolte
  • Wolfgang Vautz
چکیده

Multicapillary column (MCC) ion mobility spectrometers (IMS) are increasingly in demand for medical diagnosis, biological applications and process control. In a MCC-IMS, volatile compounds are differentiated by specific retention time and ion mobility when rapid preseparation techniques are applied, e.g. for the analysis of complex and humid samples. Therefore, high accuracy in the determination of both parameters is required for reliable identification of the signals. The retention time in the MCC is the subject of the present investigation because, for such columns, small deviations in temperature and flow velocity may cause significant changes in retention time. Therefore, a universal correction procedure would be a helpful tool to increase the accuracy of the data obtained from a gas-chromatographic preseparation. Although the effect of the carrier gas flow velocity and temperature on retention time is not linear, it could be demonstrated that a linear alignment can compensate for the changes in retention time due to common minor deviations of both the carrier gas flow velocity and the column temperature around the MCC-IMS standard operation conditions. Therefore, an effective linear alignment procedure for the correction of those deviations has been developed from the analyses of defined gas mixtures under various experimental conditions. This procedure was then applied to data sets generated from real breath analyses obtained in clinical studies using different instruments at different measuring sites for validation. The variation in the retention time of known signals, especially for compounds with higher retention times, was significantly improved. The alignment of the retention time--an indispensable procedure to achieve a more precise identification of analytes--using the proposed method reduces the random error caused by small accidental deviations in column temperature and flow velocity significantly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion mobility spectrometry for the detection of volatile organic compounds in exhaled breath of patients with lung cancer: results of a pilot study.

BACKGROUND Analysis of exhaled breath, especially of volatile organic compounds (VOCs), is of increasing interest in the diagnosis of lung cancer. Compared with other methods of breath analysis, ion mobility spectrometry (IMS) offers a tenfold higher detection rate of VOCs. By coupling the ion mobility spectrometer with a multicapillary column as a pre-separation unit, IMS offers the advantage ...

متن کامل

Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace–multi-capillary column–gas chromatography–ion mobility spectrometry (SHS–MCC–GC–IMS)

Listeria monocytogenes is a Gram-positive bacterium and an opportunistic food-borne pathogen which poses significant risk to the immune-compromised and pregnant due to the increased likelihood of acquiring infection and potential transmission of infection to the unborn child. Conventional methods of analysis suffer from either long turn-around times or lack the ability to discriminate between L...

متن کامل

Micro-machined planar field asymmetric ion mobility spectrometer as a gas chromatographic detector.

A planar high field asymmetric waveform ion mobility spectrometer (PFAIMS) with a micro-machined drift tube was characterized as a detector for capillary gas chromatography. The performance of the PFAIMS was compared directly to that of a flame ionization detector (FID) for the separation of a ketone mixture from butanone to decanone. Effluent from the column was continuously sampled by the det...

متن کامل

Volatile organo-selenium speciation in biological matter by solid phase microextraction–moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection

Microwave induced plasma atomic emission spectrometry (MIP-AES) in combination with multicapillary (MC) gas chromatography could be proven to be useful for element specific detection of volatile species. Solid phase microextraction (SPME) was used for preconcentration and sample-matrix separation. The fiber desorption unit as well as the heating control for the MC column were in-house developed...

متن کامل

Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry.

BACKGROUND We aimed to measure propofol concentrations in exhaled air with an ion mobility spectrometer coupled to a multicapillary column for pre-separation (MCC-IMS). In addition, we aimed to compare the values of these measurements with serum propofol concentrations, as determined by gas chromatography-mass spectrometry (GC-MS). METHODS Thirteen patients, ASA I or II, undergoing elective E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 397  شماره 

صفحات  -

تاریخ انتشار 2010